
Practical Scalable Consensus for Pseudo-Synchronous
Distributed Systems

Thomas Herault
ICL, University of Tennessee

Aurelien Bouteiller
ICL, University of Tennessee

George Bosilca
ICL, University of Tennessee

Marc Gamell
Rutgers University

Keita Teranishi
Sandia National Laboratories

Manish Parashar
Rutgers University

Jack Dongarra
ICL, University of Tennessee

Oak Ridge National Lab.
Manchester University

ABSTRACT
The ability to consistently handle faults in a distributed en-
vironment requires, among a small set of basic routines, an
agreement algorithm allowing surviving entities to reach a
consensual decision between a bounded set of volatile re-
sources. This paper presents an algorithm that implements
an Early Returning Agreement (ERA) in pseudo-synchronous
systems, which optimistically allows a process to resume its
activity while guaranteeing strong progress. We prove the
correctness of our ERA algorithm, and expose its logarith-
mic behavior, which is an extremely desirable property for
any algorithm which targets future exascale platforms. We
detail a practical implementation of this consensus algorithm
in the context of an MPI library, and evaluate both its effi-
ciency and scalability through a set of benchmarks and two
fault tolerant scientific applications.

CCS Concepts
•Computing methodologies → Distributed algorithms;
•Computer systems organization→Reliability; Fault-
tolerant network topologies; •Software and its engi-
neering → Software fault tolerance;

Keywords
MPI, Agreement, Fault-Tolerance

1. INTRODUCTION
The capacity to agree upon a common decision under the

duress of failures is a critical component of the infrastruc-
ture for failure recovery in distributed systems. Intuitively,
recovering from an adverse condition, like an unexpected
process failure, is simpler when one can rely on some level
of shared knowledge and cooperation between the surviving
ACM acknowledges that this contribution was authored or co-authored by an em-
ployee, or contractor of the national government. As such, the Government retains
a nonexclusive, royalty-free right to publish or reproduce this article, or to allow oth-
ers to do so, for Government purposes only. Permission to make digital or hard copies
for personal or classroom use is granted. Copies must bear this notice and the full ci-
tation on the first page. Copyrights for components of this work owned by others than
ACM must be honored. To copy otherwise, distribute, republish, or post, requires prior
specific permission and/or a fee. Request permissions from permissions@acm.org.

SC ’15, November 15 - 20, 2015, Austin, TX, USA
c© 2015 ACM. ISBN 978-1-4503-3723-6/15/11. . . $15.00

DOI: http://dx.doi.org/10.1145/2807591.2807665

participants of the distributed system. In practice, while a
small number of recovery techniques can continue operating
over a system in which no clear consistent state can be estab-
lished, like in many self-stabilizing algorithms [11], most fail-
ure recovery strategies are collective (like checkpointing [7,
14], algorithm based fault tolerance [21], etc.), or require
some guarantee about the success of previous transactions
to establish a consistent global state during the recovery
procedure (as is the case in most replication schemes [15],
distributed databases [29], etc.).

Because of its practical importance, the agreement in the
presence of failure has been studied extensively, at least from
a theoretical standpoint. The formulation of the problem is
set in terms of a k−set agreement with failures [9, 30]. The
k−set agreement problem is a generalization of the consen-
sus: considering a system made up of n processes, where
each process proposes a value, each non-faulty process has to
decide a value such that a decided value is a proposed value,
and no more than k different values are decided. In the liter-
ature, two major properties are of interest when considering
a k−set agreement algorithm: an agreement is Early Decid-
ing, when the algorithm can decide in a number of phases
that depends primarily on the effective number of faults, and
Early Stopping, when that same property holds for the num-
ber of rounds before termination. Strong theoretical bounds
on the minimal number of rounds and messages required
to achieve a k−set agreement exist [13], depending on the
failure model considered (byzantine, omission, or crash).

In this paper, we consider a practical agreement algo-
rithm with the following desired properties: 1) the unique
decided value is the result of a combination of all values
proposed by deciding processes (a major difference with a
1-set agreement), 2) failures consist of permanent crashes
in a pseudo-synchronous system (no data corruption, loss
of message, or malicious behaviors are considered), and 3)
the agreement favors the failure-free performance over the
failure case, striving to exchange a logarithmic number of
messages in the absence of failures. To satisfy this last
requirement, we introduce a practical, intermediate prop-
erty, called Early Returning : that is the capacity of an early
deciding algorithm to return before the stopping condition
(early or not) is guaranteed: as soon as a process can deter-
mine that the decision value is fixed (except if it fails itself),
the process is allowed to return. However, because the pro-

http://dx.doi.org/10.1145/2807591.2807665

cess is allowed to return early, later failures may compel that
process to participate in additional communications. There-
fore, the decision must remain available after the processes
return, in order to serve unexpected message exchanges until
the stopping condition can be established. Unlike a regular
early stopping algorithm, not all processes decide and stop
at the same round, and some processes participate in more
message exchanges – depending on the location of failed pro-
cesses in the logarithmic communication topology.

1.1 Use case: the ULFM Agreement
The agreement problem is a corner-stone of many algo-

rithms in fault-tolerant distributed computing, including the
management of distributed resources, high-availability dis-
tributed databases, total order multicast, and even ubiqui-
tous computing. In this paper, we tackle this issue from
a different perspective, with the goal of improving the effi-
ciency of the existing implementation of the fault tolerant
constructs added to the Message Passing Interface (MPI)
by the User-Level Failure Mitigation (ULFM) [3] proposal.
Moreover, MPI being a de-facto parallel programming para-
digm, one of our main concerns will be the time-to-solution,
more specifically the scalability, of the proposed agreement.

The ULFM proposal extends the MPI specification by
providing a well-defined flexible mechanism allowing appli-
cations and libraries to handle multiple types of faults. Two
of the proposed extensions have an agreement semantic:
MPIX_COMM_SHRINK and MPIX_COMM_AGREE.

The purpose of the MPIX_COMM_AGREE is to agree, between
all surviving processes in a communicator (i.e., a commu-
nication context in the MPI terminology), on an output
integer value and on the group of failed processes in the
communicator. On completion, all living processes agree
to set the output integer value to the result of a bitwise
‘AND’ operation over the contributed input values. When
a process is discovered as failed during the agreement, sur-
viving processes still agree on the output value, but the fact
that a failed process’s contribution has been included is un-
certain, and, to denote that uncertainty, MPIX_COMM_AGREE
raises an exception at all participating processes. However,
if the failure of a process is known and acknowledged by all
participants before entering the agreement, no exception is
raised and the output value is simply computed without its
contribution.

In more formal wording, this operation performs a non-
uniform agreement1 in which all surviving processes must
decide on 1) the same output value, which is a reduction of
the contributed values; and 2) a group of processes that have
failed to contribute to the output value, and the associated
action of raising an exception if members of that group have
not been acknowledged by all participants.

The purpose of the MPIX_COMM_SHRINK can be seen as an
overload of the MPIX_COMM_AGREE, as it builds a new com-
municator (similar to the output integer value of the agree-
ment), containing all processes from the original communi-
cator that are alive at the end of the shrink operation. The
output communicator is valid and consistent with all partic-
ipants. Moreover, the design commands a strong progress
by requesting that a failed process that is acknowledged by

1NB: all living processes must still return the same value as
the outcome of the agreement; only in the odd case when all
processes that returned v failed, may the surviving processes
return v′ 6= v [8]

any of the participants be excluded from the resulting com-
municator (preventing MPIX_COMM_SHRINK from being imple-
mented as a MPI_COMM_DUP).

2. EARLY RETURNING AGREEMENT
In this section, we present the Early Returning Agree-

ment Algorithm (ERA) using the guarded rules formalism:
a guarded rule has two parts, 1) a guard, that is a boolean
condition or that describes events as the detection of a fail-
ure or as a message reception, and 2) an action, that is a set
of assignments or message emissions. When a guard is true,
or the corresponding event occurs, the process will execute
all the associated actions. We assume that the execution of
a guarded rule is atomic, and that the scheduler is fair (i.e.,
any guard that is true is eventually executed).

The algorithm is designed for a typical MPI environment
with fail-stop failures: processes have a unique identifier;
they communicate by sending and receiving messages in a
reliable asynchronous network with unknown bounds on the
message transmission delay; and they behave according to
the algorithm, unless they are subject to a failure, in which
case they do not send messages, receive messages, or apply
any rule, ever. We also assume for simplicity that at least
one process survives the execution. We assume an eventually
perfect failure detector (�P in the terminology of [6, 28])
where every process has access to a distributed system that
can tell if a process is suspected of being dead or not. This
distributed system guarantees that only dead processes are
suspected at any time (strong completeness), and all dead
processes are eventually suspected of failure (eventual strong
accuracy). Such a failure detector is realistic in a system
with bounded transmission time (even if the bound is not
known): see [10] for an implementation based on heartbeats
that provide these properties with arbitrary high probability.

Last, let C be the set of all possible agreement values. All
processes share an associative and commutative determinis-
tic binary idempotent operation F , such that C

⋃
⊥ with F

is a monoid of identity ⊥.
To simplify the reading, we split the algorithm into mul-

tiple parts: ERA Part 1 presents the variables that are used
and maintained by ERA; Procedures Decision, and Agree-
ment are two procedures used by ERA; then ERA Part 3
to ERA Part 4 hold the guarded rules that are executed
when some internal condition occurs (ERA Part 3), when
a message is received (ERA Part 2), and when a process is
discovered dead (ERA Part 4). Each of these algorithms is
presented with the following notation: process p holds a set
of variables for each possible agreement, vap , denoting the
value of variable v for process p during the agreement a.

Algorithm ERA Part 1 presents the variables used for the
algorithm. We write the algorithm without making assump-
tions on the number of parallel agreements, as long as each
agreement is uniquely identified (by a in our notation). In
MPI this unique identifier can be easily computed, and since
an agreement is a collective call, all living processes in the
communicator must participate in each agreement. Since
communicators already have a unique identifier, deriving one
for each agreement is as simple as counting the number of
agreement calls in a given communicator.

Processes are uniquely identified with a natural number,
and are organized in a tree. The tree is defined through two
functions: 1) Parent(S, p) that returns the parent (a single
process) of p, assuming that processes marked as dead in S

ERA Part 1: Variables

Variable: Sp: array of process state (dead or alive),
initialized with alive by default

Variable: RequestedResultap: set of processes that
asked p to provide the result of agreement a,
initialized to ∅ by default

Variable: Resultap: result of agreement a, as
remembered by process p, initialized to ⊥ by
default

Variable: Currentap: current value of agreement a for
process p, initialized to ⊥ by default

Variable: Statusap: current status of process p in
agreement a; one of notcontributed,
gathering, broadcasting. Initialized to
notcontributed by default

Variable: Contributedap: list of processes that gave
their contribution to process p for agreement
a. Initialized to ∅ by default

are dead, and 2) Children(S, p), the children of p, assuming
the same. The tree changes with the occurrence of failures.
However, links in the tree are reconsidered if and only if one
of the nodes has died. Figures 1a to 1b are examples of how
the tree is mended when the process named 1 is dead, for
different forms of the original tree.

0

1

2

3

(a) Star

0

1 2

3 4 5 6

(b) Binary

Figure 1: Mended star and binary tree with node 1 dead

For the binary tree, the Parent function is formally de-
fined as follows. Consider the set Anc(Sp, p) of ancestors of
process p defined as:

Anc(Sp, p) = {q s.t. q = bp/2ic, i ≥ 1 ∧ Sp[q] 6= dead}

We also define the set of elders of process p as:

Eld(Sp, p) = {q < p s.t. Sp[q] 6= dead}

The Parent of process p, assuming that the dead processes
(and only them) are marked dead in Sp is, Parent(Sp, p) = maxAnc(Sp, p) if Anc(Sp, p) 6= ∅

minEld(Sp, p) if Eld(Sp, p) 6= ∅ ∧Anc(Sp, p) = ∅
⊥ if Eld(Sp, p) = ∅ ∧Anc(Sp, p) = ∅

Note that we call a process for which Parent(Sp, p) =⊥
root. The Children function can be generically written as:

Children(Sp, p) = {q s.t. Parent(Sp, q) = p}

Procedure Agreement presents the actions that a process
executes to participate in an agreement. Initializing the
agreement consists of setting itself in the gathering mode,
and combining the contributed value with the current value
of the agreement. The process then waits for the decision to
be reached before returning. While waiting, a process may
serve requests for past agreements (agreements from which
it already returned).

Procedure Agreement(v, a): agreement routine.

Input: v: process’s contributed value
Input: a: agreement identifier
Output: Agreement decided value
Statusap ← gathering

Contributedap ← Contributedap
⋃
{p}

Currentap ← F (Currentap, v)
Wait Until Resultap 6=⊥ Then

return Resultap

Procedure Decision presents the actions corresponding to
deciding upon a value. For each agreement a, each living
process p eventually calls this procedure once, and only once.
It then remembers the value decided for the agreement in
Resultap, and sends the decision to its children and all other
processes that requested it (RequestedResultap).

Procedure Decision(v, a): Decide on v for agreement a,
and participate in the broadcasts of this decision.

Input: v: decision value
Input: a: agreement identifier
Resultap ←− v
for n ∈ Children(Sp, p)

⋃
RequestedResultap do

Send(DOWN(c,Resultap)) to n

RequestedResultap ←− ∅

ERA Part 2 describes how processes react to the reception
of the different messages based on their local state. Each
message handling is considered separately.

An UP message. is received from a child, if the process
is in a notcontributed or gathering state. In this case,
the contribution of the child is taken into account, and the
child is added to the contributors, potentially triggering the
spontaneous rule (defined below) if it is the last child to
contribute. It is also possible to receive an UP message
from a child while in the broadcasting state: if a process
sees its parent die before receiving the DOWN message,
it will send its UP message again, even if its contribution
could have already been accounted for. If the decision was
already made, the process reacts by re-sending the DOWN
message; otherwise it waits for the decision to be made,
which will trigger the answer to the requesting child.

A DOWN message. is received from a parent process if
it is in the broadcasting state. It means that one of the
elders Eld(Sp, p) has decided on a pending agreement. In
this case, the process also decides and broadcasts the result
to its children and additional requesters (if any).

ARESULTREQUEST message. is received from any pro-
cess. Such a message is sent by processes when failures have
changed the tree during an agreement, and a process needs
to check if a previous decision was taken for that agreement.
Different cases happen: if the receiving process took a de-
cision for that agreement, it sends it back to the requester
using a DOWN message; if the receiving process has not
yet reached a decision, there are still two cases to consider:

• if the receiving process is in a broadcasting state, it
is possible that the requester process is now a parent

and the contribution of the receiving process was lost;
the receiving process then sends back his saved contri-
bution for the agreement;

• otherwise, the process remembers that the requester
asked to receive the result of this agreement once reached.

ERA Part 2: Rules when a message is received

Rule Recv(UP (a, v)) from q −→
if Statusap = notcontributed ∨
Statusap = gathering then

Currentap ←− F (Currentap, v)
Contributedap ←− Contributedap

⋃
{q}

else if Resultqp 6=⊥ then
Send(DOWN(a,Resultap)) to q

Rule Recv(DOWN(a, v)) from q −→
if Resultap =⊥ ∧q = Parent(Sp, p) then

Decision(v, a)

Rule Recv(RESULTREQUEST (a)) from q −→
forall the r < q do

Sp[r]←− dead

if Resultap 6=⊥ then
Send(DOWN(a,Resultap)) to q

else if Statusap = broadcasting then
Send(UP (a,Currentap)) to q

else
RequestedResultap ←− RequestedResultap

⋃
{q}

ERA Part 3 presents a rule that must be executed when
the process p reaches a state where it is gathering data, and
all of its children and itself have contributed. In the rest
of this document, we call this condition DC (for Deciding
Condition). We distinguish two cases: if the process is the
root for this agreement it makes the decision; if it is not the
root, this triggers the normal propagation of contributions
to the parent process. In both cases, the process enters into
the broadcasting state.

ERA Part 3: Spontaneous Rule

Rule Statusap = gathering ∧
Children(Sp, p)

⋃
{p} ⊆ Contributedap −→

if Parent(Sp, p) =⊥ then
Decision(Currentap, a)

else
Send(UP (a,Currentap)) to Parent(Sp, p)

Statusap ← broadcasting

ERA Part 4 describes the actions that a process takes
when it discovers that another process has died. Note that
the algorithm requires that the local failure detector moni-
tors only the processes appearing in its neighborhood.

First, the Sp array is updated to mend the tree. If the dead
process was participating (or expected to participate) in an
ongoing agreement, and it was the parent of the process p
that notices the failure, process p will react: if it becomes the
root of the new tree, it will start the decision process by first
reentering the gathering state, and then requesting all the

processes that may have received the result of this agreement
to contribute again. Otherwise, if it is not becoming root, it
just sends its contribution to its new parent (UP message),
to ensure that the contribution is not lost.

If the dead process was one of the children of p, the chil-
dren of the dead process will become direct children of p
in the mended tree. They will eventually notice the death
of their former parent (since they are monitoring it for a
DOWN message), and react by again sending an UP mes-
sage (see ERA Part 2). Eventually, this will trigger the rule
of ERA Part 3 that makes process p send its contribution
up and wait for its parent to make a decision.

However, if p was not the original root of the agreement,
but it became root following a failure, and it discovers that
one of its new children has died, then a process lower in the
tree might have received the agreement decision from a pre-
vious root. Therefore, p must request the contribution of all
the children of any of its dead children (that is, grandchil-
dren now becoming direct children).

ERA Part 4: Rule when a process is discovered dead

Rule Process q is discovered dead −→
S′p ←− Sp
Sp[q]←− dead

forall the a s.t. Statusap = broadcasting ∧
q = Parent(Sp, p) do

if Parent(Sp, p) =⊥ then
Contributedap ←− {p}
Statusap ←− gathering

for n ∈ Children(Sp, p) do
Send(RESULTREQUEST (a)) to n

else
Send(UP (a,Currentap)) to Parent(Sp, p)

forall the a s.t. q ∈ Children(S′p, p) ∧
Parent(S′p, p) =⊥ ∧Statusap = gathering do

for n ∈ Children(S′p, q) do
Send(RESULTREQUEST (a)) to n

2.1 Correctness
We define a correct agreement with the following tradi-

tional properties ([6, 28]), adapted to the MPI context. We
say that process p has contributed to value v′ if for any value
v proposed by p, F (v′, v) = v′.

Termination Every living process eventually decides.

Irrevocability Once a living process decides a value, it re-
mains decided on that value.

Agreement No two living processes decide differently.

Participation When a process decides upon a value, it con-
tributed to the decided value.

Theorem 1 (Irrevocability). Once a living process
decides a value, it remains decided on that value.

Proof. Processes decide in the procedure Agreement.
When Resultap is set to anything different from ⊥ by the
procedure Decision, the process returns. Thus, for a pro-
cess, a decision is irrevocable (as it returns only once).

To prove the other properties, we introduce the following

lemmas. We refer the reader to [19] for the formal proofs,
and present only a sketch of the proof in this article.

Lemma 1 (Reliable failure detection). For any pro-
cess p, q, and any execution E = C0, . . . , Ci, . . .:

1. if q and p are alive in configuration Ci, Sp[q] = alive

in that configuration;

2. if q is dead in configuration Ci, there is a configuration
Cj , j ≥ i such that Sp[q] = dead or p is dead in Cj;

3. if Sp[q] = dead in Ci, then q is dead in Ci;

4. if Sp[q] = dead in Ci, and p is alive in Cj≥i, then
Sp[q] = dead in Cj.

Sketch of Proof. (1) and (3) are proven by the strong
completeness of the failure detector (triggering the actions of
ERA Part 4 only when a process is dead) and by proving by
recursion on the execution that a process sends RESULT -
REQUEST messages only if it is the root process in that
configuration, thus preventing the corresponding rule in ERA
Part 2 from marking a live process as dead.

(2) is a consequence of the eventual strong accuracy of the
failure detector. The algorithm does not assign processes to
alive after the initialization, thus property (4) holds.

Lemma 2. Eventually ∃p s.t. p is root and p is alive, and
it remains root forever unless it dies.

Proof. At least one process survives the execution. Let
p = min{q s.t. q survives the execution}. Because of the
eventual strong completeness of �P , all processes q < p are
eventually marked dead in Sp. Thus, eventually, Anc(Sp, p) =
∅, and Eld(Sp, p) = ∅ =⇒ Parent(SP , p) =⊥.

Consider a configuration in which p is root. For all pro-
cesses r such that r < p, Sp[r] = dead. By lemma 1, this
remains true as long as p lives. Thus, Parent(Sp, p) =⊥ as
long as p lives.

Lemma 3. A root process can only decide in ERA Part 3
after it contributed to the decided value.

Sketch of Proof. Consider a process p that does not
become root. By observation of the algorithm, if no children
of p dies, the condition DC is true only when all children
have contributed to Currentap (Rule Recv(UP)).

The children set can change due to failures, but failures
are eventually detected both on the parent and children of
the failed process (lemma 1), and the condition DC remains
false until all the children of the dead process have con-
tributed. Thus, when DC is true on a node, all alive pro-
cesses under that node in the tree have contributed. All
nodes are under the root of the tree, so all nodes have con-
tributed to the value decided by the root.

Consider now that p becomes root during the execution.
p can adopt children that were not in its subtree. DC might
have been true temporarily for p before it became root, but
when it becomes root, any UP message it sent was sent to
a process that is now dead. By resetting Contributedap to
{p}, in ERA Part 4, DC becomes false for p until all its
children contribute (potentially multiple times; in that case,
Currentap is unchanged by repeated contributions because
F is idempotent). Thus, p can only decide in ERA Part 3
when all the nodes have contributed.

Theorem 2 (Agreement). If process p calls Decision
(v1, a), and at a later time process q calls Decision(v2, a),
and p is alive when q calls the decision, then v1 = v2.

Sketch of Proof. We prove first that when a root pro-
cess decides, if it survives, all other surviving processes de-
cide the same value. This is done by contradiction, showing
that if another process decides a different value for the same
agreement, that value must have come from another process
than this root, and thus the decision was reached while the
condition DC is false for the root process, which is impos-
sible. Lemmas 2 and 3 imply that the root process remains
root, and that it can decide only after all processes in the
tree have contributed to its decision.

Then, we prove that non-root processes always decide the
same value as the root, by recursion on the topology of the
tree, because all nodes remain connected to the root.

Theorem 3 (Termination). Every living process even-
tually decides.

Proof. By lemma 2, there is eventually a root in the
system. By lemma 3, the root eventually decides. We prove
that if a root decides and remains alive, all processes even-
tually receive a DOWN message (triggering the decision).

When a process decides, it broadcasts the DOWN mes-
sage to all its children (proc. Decision). If one of the children
dies before receiving the DOWN message, its descendants
are in the gathering status, thus ERA Part 4 makes them
send an UP message to their new parent. By recursion on
the topology of the tree, this parent is either the root, or a
process that received the DOWN message, thus triggering
the emission of a DOWN message.

Theorem 4 (Participation). When a process decides
upon a value, it contributed to this value.

Proof. By theorem 3, all processes decide. By theo-
rem 2, all decisions are equal to a decision of a root process.
If a root process decides in ERA Part 2, then this decision
comes from a previous root (proof of theorem 3). By recur-
sion on the execution, all decisions originate in ERA Part
3. If a root process decides in ERA Part 3, then its decision
includes the contribution of all alive nodes (lemma 3).

3. COMPLEXITY ANALYSIS

Theorem 5. Let δ be the maximum degree of the tree de-
fined by the Parent/Children functions, and n the number
of nodes in the tree: all processes decide in at most 2 logδ n
parallel steps if no failures happen and at most O(2 logδ n+
fδ) parallel steps if f failures happen.

Proof. Consider first the case when no failure happen
during agreement a: ERA Part 4 is never triggered, no pro-
cess send RESULTREQUEST message related to agree-
ment a, and thus, RequestedResultap

⋃
Children(Sp, p) =

Children(Sp, p) for all process p. Let d be the depth of the
tree.

ERA Part 3 is triggered in parallel for all leafs of the
tree, that send a single message UP to their parent. Non-
leaf nodes receives exactly |Children(Sp, p)| UP messages,
which makes the guard in ERA Part 3 true to them, and they
then send one UP to their parents if they are not root. If
all steps happen in parallel, the root process calls Decision
after the information contained in the UP message of the
deepest leaf of the tree reaches it, thus after d parallel steps.

In the Decision procedure, the root process sends exactly
|Children(Sp, p)| DOWN messages to its children (since

RequestedResultap
⋃
Children(Sp, p) = Children(Sp, p)). Ev-

ery node p that receive such DOWN message does the same.
The algorithm terminates when the last leaf has received

the DOWN message. If all steps happen in parallel, the last
leaves to receive such message are the deepest in the tree,
after d parallel steps.

If the maximum degree of the tree is δ, then the depth of
the tree is logδ n, and the algorithm terminates in 2 logδ n
parallel steps.

Consider now that for some F ≥ 0, if F failures hap-
pen during agreement a, the algorithm completes in O(Fδ+
logδ n) parallel steps. Consider an execution E during which
F + 1 failures happen while computing agreement a. There
is a prefix of E in which only F failures happened. Consider
the configuration C at the end of that prefix. C is reached
in at most O(Fδ + 2 logδ n) parallel steps (by assumption).

Consider first the case when the F +1 process that fails in
E is the root process in C. There is a configuration C′ after
C in which p is the new root for a. If the decision reached
another process, q, p either received the decision, or one
of Childrenp(Sp, p) received the decision (theorem 2). Let c
be |Children(Sp, p)| in C′ and the remaining configurations.
As there was F + 1 failures, c ≤ (F + 1)δ. Process p will
send c RESULTREQUEST messages, and wait for the c
UP or DOWN messages before deciding (ERA Part 4 and
ERA Part 3). Then, it will broadcast the decision (ERA
Part 3), which will take up to d parallel steps, completing
the algorithm O(logδ n+ (F + 1)δ) parallel steps after C.

Consider now the case when the F +1 process that fails in
E is not the root process in C. Let p be the failing process.
There is a configuration C′ after C in which the parent q of
p in C considers the children of p in C as its children. In
C′, |Childrenq(Sq, q)| ≤ (F + 1)δ. Thus, q must receive up
to (F + 1)δ UP messages, and send up to (F + 1)δ DOWN
messages. Thus, the algorithm will complete at most (F +
1)δ + logδ n parallel steps after C.

Since O(logδ n+Fδ) +O(logδ n+ (F + 1)δ) = O(logδ n+
(F+1)δ), E completes in at most O(logδ n+(F+1)δ) parallel
steps.

By recursion on the number of failures, the theorem holds.

4. ERA OPTIMIZATIONS
We incorporated a set of optimizations in our implemen-

tation of the algorithm. We kept these out of the formal
presentation of the algorithm for clarity’s sake.

Garbage Collection. ERA keeps a set of variables for ev-
ery agreement. The storage of these variables is imple-
mented through a hash table and variables default to their
initialization value if they are not present in the hash table.
Once a process returns from a given agreement, and since
no other decision can be reached for the agreement, most
of the variables that maintain the state of the agreement
(i.e., RequestedResultap, Currentap, Statusap, Contributedap)
have no further use and can be reclaimed. The result of the
agreement itself, however, can be requested by another par-
ticipant long after the result was locally returned and must
be kept.

If the program would loop over agreements, this could ex-
haust the available memory. Because the ULFM proposal
of MPI allows for the definition of an immediate agree-
ment (a nonblocking agreement call), causal dependency

between agreements happening on the same communicator
cannot be enforced: immediate agreement i + 1 may com-
plete and be waited on by the calling program before imme-
diate agreement i. The implementation features a garbage
collection mechanism: amongst the values on which every
process agree during any agreement, we pass a range of
agreement identifiers that were returned by the participating
process, and the reduction function F computes the small-
est intersection of the contributed ranges. When an agree-
ment completes, it thus provides a global range of previous
agreements that were returned by all alive processes of that
communicator, and for which the Resultap variables can be
safely disposed of, since they will never be requested again.
When the communicator is freed, if agreements were used, a
blocking flushing agreement is added to collect all remaining
values on that communicator.

Topology Deterioration Mitigation. As processes die, the
tree on which ERA works deteriorates. Because trees are
mended in a way that respects hierarchy (a process can only
become the child of a node in its initial ancestry, or a child of
the current root), the topology can deteriorate quickly to a
star, risking the loss of the per-process-logarithmic message
count property. This is unavoidable during the progression
of a given agreement, because preserving the hierarchy of the
initial tree is necessary to guarantee that only a subset of
the alive processes need to be contacted for previous result
requests when a process is promoted to root. However, be-
tween agreements, our ERA implementation mitigates this
deterioration effect by allowing Tree Rebalacing.

During an agreement, processes also agree upon a set
of dead processes. This enables the semantic required by
ULFM on return codes (any non globally acknowledged dead
process forces the agreement to consistently return a failure).
We make use of this shared knowledge to maintain a con-
sistent list of alive processes that can then be used to build
balanced trees for future agreements, and therefore operat-
ing as if no failure had deteriorated the communicator.

Topologies. The ERA algorithm is designed to work with
any tree topology. In the performance evaluation, we will
consider primarily the binary tree, although we implemented
two other extreme topologies for testing purposes: the star
(all processes connected directly to the root), and the string
of processes. In addition to the topology, the implemen-
tation features an architecture-aware option, allowing for
multi-level hierarchical topologies, where each level can have
its own tree and root, and where the roots of one level are
the participants of the next. Such hierarchical topologies
allow for optimized mappings between the hardware topolo-
gies and the algorithmic needs, reducing the number of mes-
sage exchanges on the most costly inter-process links. We
denote the shape of the tree used as either a flat binary tree,
when the locality-improvement is not used, or an X/Y tree,
when groups are organized internally using a Y-tree, and be-
tween them using an X-tree (e.g., a bin/star tree organizes
group roots along a binary tree, and each other process of a
group is connected to its root directly).

5. PERFORMANCE EVALUATION
The ERA Algorithm is implemented in the ULFM fork of

Open MPI 1.6(r26237) [4]. To follow its guarded rules rep-

���

����

����

����

����

����

����

����

����

����

��� ��� ��� ���� ���� ���� �� �� ��

�
�

����������

���

����������
�����������������
���������������
����������������������

(a) ERA versus Log2phases Agreement scal-
ability in the failure-free case.

���

���

���

���

����

����

����

����

�� �� �� �� �� ��

�
�

����������

��������������������������

��������������������
������������������
�����������������
��������������������������
����������������������

(b) ERA performance depending on the tree
topology.

�������

�������

�������

�������

�������

�������

�� �� �� �� �� ��
����������

��������������������������������
����������������������������

�������

�������

�������

�������

�
�

�����������������
������������������

�������

�������

�������

�������

���������������������������������������

���������������������

��
�

��
�

(c) Post Failure Agreement Cost.

Failed Ranks 0 (root) 4 (child of 0) 16 (node master) 17 (child of 16) 16–31 (full node)

Detecting Agreement 12,659 93,816 80,023 112,414 82,171
Stabilize Agreement 104.9 102 98.9 104.2 117.1
Post-failure Agreement 69.7 75.7 77.1 76.7 85.2

(d) Cost (µs) depending on the role of the failed process in a bin/bin ERA w/o rebalancing, 6000 procs.

Figure 2: Synthetic benchmark performance of the agreement.

resentation, it is implemented just above the Byte Trans-
fer Layer of Open MPI (below the MPI semantic layer):
this enables the reception ofRESULTREQUEST messages
even when outside an MPIX_COMM_AGREE call, as imposed by
the early returning property of the algorithm. Additionally,
based on our prior studies highlighting the fact that local
computations exhibiting linear behaviors dominate the cost,
even in medium scale environments, we have taken extra
steps to ensure that, when possible, all local operations fol-
low a logarithmic time-to-solution.

This implementation was validated using a stress test that
performs an infinite loop of agreements, where any failed
process is replaced with a new process. Failures are injected
by killing random MPI processes with different frequencies.
A 24h run on 128 processors (16 nodes, 8 cores each, TCP
over Gigabit Ethernet) completed 969,739 agreements suc-
cesfully while tolerating 146,213 failures.

5.1 Agreement Performance
We deploy a synthetic benchmark on the NICS Darter

supercomputer, a Cray XC30 (cascade) machine, to analyze
the agreement latency with and without failures at scale.
We employ the ugni transport layer to exploit the Cray
Aries interconnect, and the sm transport layer for inter-core
communication.

The benchmark calls MPIX_COMM_AGREE in a loop, with fail-
ures injected at controllable iterations and processes. We
consider four types of agreements: failure-free agreements
precede the injection of a failure. The first agreement during
which a failure manifests is the failure detecting agreement;
it returns MPI_ERR_PROC_FAILED per ULFM specification.
One additional stabilizing agreement, or more for complex
failure scenarios, is then necessary to acknowledge the fail-
ure(s), optimize the agreement tree, and return MPI_SUCCESS.
Subsequent post-failure agreements do not experience sup-
plementary failures. For each participant, we collect the

mean duration, and the standard deviation over 32k agree-
ments; the reported mean time is the maximum between the
mean times collected at all processes.

Scalability. In Figure 2a, we present the scalability trend
of ERA when no failures are disturbing the system. We con-
sider two different agreement implementations, 1) the known
state-of-the-art 2-phase-commit Agreement algorithm pre-
sented in [23], called Log2phases, and 2) our best perform-
ing version of ERA. We also add, for reference, the perfor-
mance of an Allreduce operation that in a failure-free con-
text would have had the same outcome as the agreement.
With the bin/bin topology on the darter machine using one
process per core, thus 16 processes per node, the average
branching degree of non-leaf nodes is 2.125. The ERA and
the Allreduce operations both exhibit a logarithmic trend
when the number of nodes increase, as can be observed by
the close fit (asymptotic standard error of 0.6%) of the log-
arithmic function era(x) = 6.7 log2.125(x). In contrast, the
Log2phases algorithm exhibits a linear scaling with the num-
ber of nodes, despite the expected theoretical bound pro-
posed in [23]. As a result, we stopped testing the perfor-
mance of the Log2phases algorithms at larger scale or under
the non failure-free scenarios.

Communication Topologies. In Figure 2b we compare the
performance of different architecture-aware versions of the
ERA algorithm. In the flat binary tree, all ranks are orga-
nized in a binary tree, regardless of the hardware locality of
ranks collocated on cores of the same node. In the hierar-
chical methods, one rank represents the node and partici-
pates in the inter-node binary tree; on each node, collocated
ranks are all children of the representing rank in the bin/s-
tar method, or are organized along a node-local binary tree
in the bin/bin method. The flat binary topology ERA and
the Open MPI Allreduce are both hardware locality agnos-

0

5

10

15

20

25

16 32 64 128
256

512
1024

O
v
e

rh
e

a
d

o
f

R
e

c
o

v
e

ry
(s

)

Number of simultaneous core failures

shrink with Log2phases
shrink with ERA

(a) Simultaneous failures on an increasing
number of cores, over 2197 total cores.

1
3
3
1

2
1
9
7

3
3
7
5

4
0
9
6

4
9
1
3
0

4
9
1
3
1

4
9
1
3
2

5
8
3
2

6
8
5
9

8
0
0
0

9
2
6
1

Number of cores

25

20

15

10

5

0

(b) 256-cores failure (i.e., 16 nodes) on an
increasing number of total cores.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1
3
3
1

2
1
9
7

3
3
7
5

4
0
9
6

4
9
1
3

5
8
3
2

6
8
5
9

8
0
0
0

9
2
6
1

1
0
6
4
8

Number of cores

(c) 16-cores failure (i.e., 1 node), on an
increasing number of total cores.

Figure 3: Recovery overhead of the shrink operation, which uses the agreement algorithm. In Figure 3b, the subindex in the
4913-cores tests indicates a different distribution of failures within the 512-cores group.

tic; their performance profiles are extremely similar. In con-
trast, the Cray Allreduce exhibits a better scalability thanks
to accounting for the locality of ranks. Counterintuitively,
the bin/star hierarchical topology performs worse than the
flat binary tree: the representing rank for a node has 16
local children and the resulting 16 sequential memcopy oper-
ations (on the shared-memory device) take longer than the
latency to cross the supplementary long-range links. In the
bin/bin topology, most of these memory copies are paral-
lelized and henceforth the overall algorithm scales logarith-
mically. When compared with the fully optimized, non fault
tolerant Allreduce, the latency is doubled, which is a logical
consequence of the need for the ERA operation to sequential-
ize a reduce and a broadcast that do not overlap (to ensure
the consistent decision criterion in the failure case), while
the Allreduce operation is spared that requirement and can
overlap multiple interweaved reductions.

Impact of Failures. In Figure 2c we analyze the cost of
failure-detecting, stabilizing and post-failure agreements as
defined in Section 5.1. The cost of the failure-detecting
agreement is strongly correlated to the network layer time-
out and the propagation latency of failure information in
the failure detector infrastructure (in this case, out-of-band
propagation over a TCP overlay in the runtime layer of Open
MPI). The stabilizing ERA exhibits a linear overhead re-
sulting from the cost of rebuilding the ERA topology tree,
an operation that ensures optimal post-failure performance,
but is optional for correctness. Indeed, the performance of
a rebalanced post-failure ERA is indistinguishable from a
failure-free agreement. When only one failure is injected,
the cost of rebalancing the tree is not justified since the
performance of the post failure non-rebalanced agreement is
similar to the rebalanced agreement. Meanwhile, the cost
of the stabilizing agreement without tree rebuilding is simi-
lar to a post-failure agreement, suggesting that the tree re-
building should be conditional, and triggered only when the
topology has degenerated after a large number of failures.

We considered other scenarios of failure in Table 2d. Start-
ing from a setup with 6,000 processes, we used the same
benchmark as above, but instead of always injecting fail-
ures on the same rank, we considered different cases of pro-
cess failures: a) when the rank 0 fails (initial root of the
agreement tree); b) when a direct child of the root of the

agreement tree process fails; c) when a node-representative
process fails; d) when some process that is not a node-
representative fails; and e) when all the processes of an entire
node fail but not the root of the agreement tree. As can be
observed and was explained before, the detecting agreement
is subject to a high latency due to limitations in the failure
detection implementation; then the stabilize agreement pays
the overhead of establishing additional connections to bypass
the failed processes, and the post-failure agreements return
to a small latency that is function of the new reduction tree.
As the tree is not re-balanced in this experiment, one can
observe a slight reduction of performance when the failure is
injected lower in the tree. Hence, a practical approach would
be to trigger the tree-rebalancing only when an agreement
must be executed on a communicator after multiple failures.
Moreover, in a context where the communicators are rebuilt
after a failure, the cost of the tree-rebalancing can be spared.

5.2 Application Usage

5.2.1 S3D and FENIX
S3D is a highly parallel method-of-lines solver for partial

differential equations and is used to perform first-principles-
based direct numerical simulations of turbulent combustion.
It employs high order explicit finite difference numerical
schemes for spatial and temporal derivatives, and realis-
tic physics for thermodynamics, molecular transport, and
chemical kinetics. S3D has been ported to all major plat-
forms, demonstrates good scalability up to nearly 200K cores,
and has been highlighted by [1] as one of five promising ap-
plications on the path to exascale.

Fenix is a framework aimed at enabling online (i.e., with-
out disrupting the job) and transparent recovery from pro-
cess, node, blade, and cabinet failures for parallel applica-
tions in an efficient and scalable manner. Fenix encapsu-
lates mechanisms to transparently capture failures through
ULFM return codes, re-spawn new processes on spare nodes
when possible, fix failed communicators using ULFM ca-
pabilities, restore application state, and return the execu-
tion control back to the application. Fenix can leverage
existing checkpointing solutions to enable automatic data
recovery, but this evaluation uses application-driven, disk-
less, implicitly-coordinated checkpointing. Process recovery
in Fenix involves four key stages: (i) detecting the failure,

0.00	

2.00	

4.00	

6.00	

8.00	

10.00	

12.00	

14.00	

512	 1024	 2048	

Ex
ec
u&

on
	 T
im

e	
(in

	 se
co
nd

s)
	

Number	 of	 Processes	

Log2phase	

ERA	

(a) Process and communicator recovery.

0	
5	
10	
15	
20	
25	
30	
35	
40	

512	 1024	 2048	
Number	 of	 processes	

(b) Global agreement during 20 time steps.

0	

50	

100	

150	

200	

250	

300	

350	

400	

512	 1024	 2048	
Number	 of	 processes	

(c) Total execution time (1 process failure).

Figure 4: Performance of the LFLR-enabled MiniFE, computing 20 time steps (20 linear system solutions).

(ii) recovering the environment, (iii) recovering the data,
and (iv) restarting the execution. In this section, we briefly
describe the implementation of (i) and (ii), which relies on
ULFM’s capability. The description of all the stages is avail-
able in our previous work [17].

Failure detection is delegated to ULFM-enabled MPI,
which guarantees that MPI communications should return
an ERR_PROC_FAILED error code if the runtime detects that a
process failure prevents the successful completion of the op-
eration. The error codes are detected in Fenix using MPI’s
profiling interface. As a result, no changes in the MPI run-
time itself are required, which will allow portability of Fenix
when interfaces such as ULFM become part of the MPI stan-
dard.

Environment recovery begins with invalidating all com-
municators, and then propagating the failure notification
to all ranks. In the current Fenix prototype, this is done
using MPIX_COMM_REVOKE for all communicators in the sys-
tem – the user must register their own communicators us-
ing Fenix calls. After that, a call to MPIX_COMM_SHRINK

on the world communicator will remove all failed processes,
while the other communicators are freed. If this step suc-
ceeds, new processes are spawned and merged with the old
world communicator using the dynamic features of MPI-2.
As this may reassign rank numbers, Fenix uses the split
operation to set them to their previous value. Note that
this procedure allows N − 1 simultaneous process failures,
N being the number of processes running. Alternatively,
it is possible to fill the processes from a previously allo-
cated process pool if the underlying computing system does
not support MPI_COMM_SPAWN. Once Fenix’s communicators
are recovered, a long jump is used to return execution to
Fenix_Init(), except in the case of newly spawned pro-
cesses – or processes in the process pool – which are already
inside Fenix_Init(). From there, all processes, both sur-
vivors and newly spawned, are merged into the same execu-
tion path to prepare the recovery of the data.

In the rest of the section, we use S3D augmented with
Fenix to test the effect of the new agreement algorithm on
the recovery process when compared to the baseline agree-
ment algorithm (revision b24c2e4 of the ULFM prototype).
Figure 3 shows the results of these experiments in terms of
total absolute cost of each call to the shrink operation. The
MPIX_COMM_SHRINK operation, which uses the agreement al-
gorithm, has been identified in [17] as the most time consum-
ing operation of the recovery process. On Figure 3a we see
how the operation scales with an increasing number of fail-

ures, from one node (16 cores) up to 64 nodes (1024 cores).
We observe the drastic impact of the new ERA agreement
compared with the previous Log2phases algorithm, and the
absolute time is clearly smaller with the new agreement al-
gorithm, in all cases. By using the new agreement, however,
the smaller the failure, the faster it is to recover. This is a
highly desirable property, as described in [18], and cannot
be observed when using the former agreement algorithm, in
which case the recovery time takes the same amount of time
regardless of the failure size. The results shown in Figure 3b
represent executions injecting 256-cores failures using an in-
creasing total number of cores. The new agreement is not
only almost an order of magnitude faster, but scales to a
number of processes not reachable before. It is also worth
noting that the shape of the failure (i.e., the position of the
nodes that fail, not only the number of nodes that fail) af-
fects the recovery time with the new agreement algorithm,
while this did not happen with the former. Finally, Fig-
ure 3c shows the scalability of the Fenix framework when
injecting a 16-cores failure, which corresponds to a single
node on Titan. As we can observe, the time to recover the
communicator, while exhibiting a linear behavior, remains
below 1.4 seconds when using more than 10,000 total cores.
Clearly, we see a significant reduction in all cases.

As was shown in Section V.F of [17], the recovery cost
due to communicator shrink accounts for 14% of the total
execution time when simulating a 47-s MTBF (out of a total
overhead due to faults and fault tolerance of 31%), a 7% with
a 94-s MTBF (out of 15%), and a 4% with a 189-s MTBF
(out of 10%) using S3D augmented with Fenix. Each of these
experiments were done by injecting node failures (16 cores)
in a total of 2197 cores. If we look at Figure 3a, we can ob-
serve that injecting 16-core failures in a 2197-core execution
triggered a 6.85-second shrink with the former agreement al-
gorithm and a 0.43-second shrink with the new agreement.
Given that we see a 16-fold cost reduction of the shrink op-
eration, it is safe to assume that the total overhead due to
failures and fault tolerance has been reduced from 31% to
17.9%, from 15% to 8.4%, and from 10% to 6.2% for the
47-s, 94-s, and 189-s MTBFs, respectively.

5.2.2 MiniFE and LFLR Framework
MiniFE is part of the Mantevo mini-applications suite [20]

that represents computation and communication patterns of
large scale parallel finite element analysis applications that
serve a wide spectrum of HPC research. The source code
is written in C++ with extensive use of templates to sup-

port multiple data types and node-level parallel program-
ming models for exploration of various computing platforms,
in addition to the flat-MPI programming model.

MiniFE has been integrated with a resilient application
framework called LFLR (Local Failure Local Recovery) [32],
which leverages ULFM to allow on-line application recovery
from process loss without the traditional checkpoint/restart
(C/R). LFLR extends the capability of ULFM through a
layer of C++ classes to support (i) abstractions of data re-
covery (through a commit and restore method) for enabling
application-specific recovery schemes, (ii) multiple options
for persistent storage, and (iii) an active spare process pool
to mitigate the complications from continuing the execution
with fewer processes. In particular, LFLR exploits active
spare processes to keep the entire application state in sync,
by running the same program with no data distribution on
the spare processes. Similar to Fenix (Section 5.2.1), the pro-
cess recovery involves MPIX_COMM_SHRINK and several com-
municator creation and splitting calls to reestablish a consis-
tent execution environment. Contrary to Fenix, the state of
the processes is periodically checked using MPIX_COMM_AGREE

at the beginning of commit. This synchronization works as
a notification of failures across the surviving processes and
also triggers the recovery operations. After the process re-
covery, the data objects are reconstituted through a restore

call using the checkpoint data made at the previous commit.
The original MiniFE code only performs a single linear

system solution with relatively quick mesh generation and
matrix assembly steps. Despite its usefulness, the code may
not reflect the whole-life of realistic application executions,
running hours to simulate nonlinear responses or time de-
pendent behaviors of physical systems. For these reasons,
we have modified the code to perform a time-dependent
PDE solution, where each time step involves a solution of
a sparse linear system with the Conjugate Gradient (CG)
method [32]. This modification allows us to study the sit-
uation where process failures happen in the middle of time
stepping, and the recovery triggers a rollback to repeat the
current time step after the LFLR recovery of processes and
data. In addition to commit calls for checkpointing the appli-
cation data at every time step (before/after CG solver call),
MPIX_COMM_AGREE is called at every CG iteration inside the
linear system solver. This serves as an extra convergence
condition so that, when a process failure occurs, the solver
can safely terminate in the same number of CG iterations
across all surviving processes.

The performance of LFLR-enabled MiniFE is measured
on the TLCC2 PC cluster at Sandia National Laboratories
(see [32] for the details) using the ERA and Log2phases
(rev. b24c2e4) agreement from the ULFM prototype. In
this study, the MiniFE code makes 20 time steps (20 lin-
ear system solutions) on 512, 1,024, and 2,048 processes
with 32 stand-by spare processes, and problem sizes set to
(256× 256× 512), (256× 512× 512), and (512× 512× 512),
respectively. The failure is randomly injected in a single
process once during the execution.

Figure 4a presents the performance of communicator re-
covery, executed after a process failure has been detected.
The ERA agreement achieves significantly better scaling
than the Log2phases algorithm, imposing a low cost on the
recovery process. Even when a single failure is considered,
the benefit of the new agreement algorithm remains visi-
ble in Figure 4b, which indicates the total overhead, across

all steps of the application, of the global agreement inside
LFLR’s commit calls and the linear system solver in our
MiniFE code. The total execution time presented in Fig-
ure 4c indicates that ERA improves the total solution time
by approximately by 10% for a 2,048 processes case. How-
ever, the most interesting outcome of these results is that,
even if at the scale where the results are presented in Fig-
ure 4a where the absolute improvement is significant but
small, the scalability of the two approaches (Log2phases and
ERA) are drastically different, suggesting that only one of
these approaches could sustain the scale where the original
application will be executed.

6. RELATED WORK
[16] determined long ago that without assumption on the

delay of transmission of messages, the consensus problem
was simply impossible to solve in distributed systems, even
with a single failure. This result called for a large set of stud-
ies (e.g., [6, 31, 22]) to refine the computability result of the
consensus problem: the primary goal was to define the mini-
mal set of assumptions that allows for solving the consensus
despite failures. Few of these approaches have a practical
application, or provided an actual implementation: the pro-
posed algorithms are phase-based, and an n2 communication
(all-to-all exchange) is used during each phase. This phase
based model does not directly match parallel programming
paradigms based on asynchronous messages like MPI.

In volatile environments like ubiquitous computing and
grids, probabilistic algorithms (known as gossip algorithms)
have been proposed to compute, with a high probability,
a consensus between loosely coupled sets of processes [2,
12]. However, the context of MPI — where the volatility is
expected to be lower, the synchronization between processes
is tighter, and the communication bounds are more reliable
— calls for a more direct approach.

Paxos.
[25, 24] is a popular and efficient agreement algorithm for

distributed systems. It is based on agents with different vir-
tual roles (proposers, acceptors, and learners) and decides
on one of the values proposed by the proposers. Paxos uses
voting techniques to reach a quorum of acceptors that will
decide upon a value. It is based on phases, during which pro-
cesses of a given role will communicate with a large enough
number of processes of another role to guarantee that the in-
formation is not lost. The first algorithm has been extended
to a large family of algorithms, e.g., to tolerate byzantine
failures [33], define distributed atomic operations on shared
objects [26], or reduce the number of phases in the failure-
free cases [27]. Paxos targets high-availability systems, like
distributed databases, storing the state of the different pro-
cesses in reliable storage to tolerate intermittent failures.

The first reason to consider a different algorithm is that
in the MPI context, all processes contribute to the final de-
cided value – that is a combination of the proposed values by
a group of processes (namely, processes that were alive when
entering the consensus routine). In Paxos, the decided value
is one of the values proposed by the proposers [25]. This
would require first reducing the contribution to the subset
of proposers (e.g., through an allreduce), and only then de-
ciding on this value using Paxos. Our algorithm implements
the decision and the reduction in the same phase.

The second reason to consider a different algorithm is that

the set of assumptions valid in a typical MPI environment
is different from the assumptions made in Paxos: the failure
model is fail-stop in our work, and we do not have to tolerate
intermittent failures that Paxos considers; message loss and
duplication are resolved at the lower transport layer, and we
do not need to tolerate such cases; last, but not least, the
concept of the process group and collective calls provided by
MPI simplifies some steps of the algorithms, as the alloca-
tion of a unique number uniquely identifies the agreement,
removing the need for one of the phases in Paxos.

Multiple Phase Commit.
In [5], the author proposed a scalable implementation of

an agreement algorithm, based on reduction trees to imple-
ment three phases similar to the three phases commit proto-
col: first, a ballot number is chosen; then a value is proposed;
last it is committed. Each of these phases involves a loga-
rithmic reliable propagation of information with feedback.
Our algorithm provides the same functionality with better
performance (a single logarithmic phase is used in the nor-
mal case), and better adaptability (as the reduction tree can
be updated to maintain optimal performance).

In [23], the authors propose a two-phase commit approach,
where processes gather the information to be agreed upon
over a single, globally known root, and then broadcast the
result. Similarly to [5], this algorithm was designed for a
different specification, where only a blocking version of the
agreement in necessary. As a result, only up to two agree-
ments can co-exist in the same communicator at any given
time, simplifying the bookkeeping but limiting the usability
of the algorithm. Theoretically, this approach is similar to
our ERA in the failure-free case. However, unlike the ERA,
this two-phase algorithm lacks, by design, the capability to
be extended to a non-blocking agreement case. Moreover, a
practical evaluation failed to demonstrate the expected log-
arithmic behavior of this two-phase algorithm, and instead
demonstrated that in the failure-free case, the ERA imple-
mentation significantly outperforms this algorithm (see Sec-
tion 5 for a discussion on the reasons). In the case of failures,
the two-phase commit algorithm tries to re-elect a root to
reconcile the situation. Stressing experiments show, how-
ever, that even a small set of random failures will eventually
make the implemented election fail and the system enters a
safety abort procedure for the agreement.

7. CONCLUSION
Facing the changes in the hardware architecture, together

with the expected increase in the number of resources in fu-
ture exascale platforms, it becomes reasonable to look for
alternative, complementary, or meliorative solutions to the
traditional checkpoint/restart approaches. Introducing the
capability to handle process failure in any parallel program-
ming paradigm, or providing any software layer with the fac-
ulty to gracefully deal with failures in a distributed system
will empower the deployment of new classes of application
resilience methods that promise to greatly reduce the cost
of recovery in distributed environments. Among the set of
routines necessary to this goal, the agreement is bound to
have a crucial role as it will not only define the performance
of the programming approach, but will strictly delineate the
usability and practicability of the proposed solutions. Based
on the core communication concepts used by parallel pro-

gramming paradigms, this paper introduces an Early Re-
turning Agreement (ERA), a property that optimistically
allows processes to quickly resume their activity, while still
guaranteeing Termination, Irrevocability, Participation, and
Agreement properties despite failures. We proved this algo-
rithm using the guarded rules formalism, and presented a
practical implementation and its optimizations.

Through synthetic benchmarks and real applications, in-
cluding large scale runs of Fenix (S3D) and LFLR (MiniFE),
we investigated the ERA costs, and highlighted the corre-
spondence between the theoretical and practical logarithmic
behavior of the proposed algorithm and the implementation.
We have shown that using this algorithm, it is possible to de-
sign efficient application or domain specific fault mitigation
building blocks that preserve the original application perfor-
mance while augmenting the original applications with the
capability to handle any type of future execution platforms
at any scale.

Previous uses of the ULFM constructs highlighted the
overhead of the agreement operation as one of the major
obstacles preventing a larger adoption of the concepts. The
new ERA algorithm addresses this problem entirely, allow-
ing the implementors to identify other limiting or poorly
scalable elements of the fault management building blocks.
From the performance presented in this paper, it becomes
clear that the next largest overhead is the failure detection.
We plan to address this challenge in the near future.

8. ACKNOWLEDGMENTS
The authors would like to thank Robert Clay, Michael

Heroux and Josep Gamell for interesting discussions related
to this work. This work is partially supported by the NSF
(award #1339820), and the CREST project of the Japan
Science and Technology Agency (JST). This work is also par-
tially supported by the U.S. Department of Energy (DOE)
National Nuclear Security Administration (NNSA) Advanced
Simulation and Computing (ASC) program. Sandia Na-
tional Laboratories is a multi-program laboratory managed
and operated by Sandia Corporation, a wholly owned sub-
sidiary of Lockheed Martin Corporation, for the U.S. De-
partment of Energy’s National Nuclear Security Adminis-
tration under contract DE-AC04-94AL85000.

9. REFERENCES
[1] S. Amarasinghe and et al. Exascale Programming

Challenges. In Proceedings of the Workshop on
Exascale Programming Challenges, Marina del Rey,
CA, USA. U.S Department of Energy, Office of
Science, Office of Advanced Scientific Computing
Research (ASCR), Jul 2011.

[2] T. Aysal, M. Yildiz, A. Sarwate, and A. Scaglione.
Broadcast gossip algorithms for consensus. Signal
Processing, IEEE Transactions on, 57(7):2748–2761,
July 2009.

[3] W. Bland, A. Bouteiller, T. Herault, G. Bosilca, and
J. Dongarra. Post-failure recovery of MPI
communication capability: Design and rationale.
International Journal of High Performance Computing
and Applications, 27(3):244–254, 2013.

[4] W. Bland, A. Bouteiller, T. Herault, J. Hursey,
G. Bosilca, and J. J. Dongarra. An evaluation of

User-Level Failure Mitigation support in MPI.
Computing, 95(12):1171–1184, 2013.

[5] D. Buntinas. Scalable distributed consensus to
support MPI fault tolerance. In 26th IEEE
International Parallel and Distributed Processing
Symposium, IPDPS 2012, pages 1240–1249, Shanghai,
China, May 2012.

[6] T. D. Chandra, V. Hadzilacos, and S. Toueg. The
weakest failure detector for solving consensus. J.
ACM, 43(4):685–722, July 1996.

[7] K. M. Chandy and L. Lamport. Distributed snapshots:
Determining global states of distributed systems.
ACM Trans. Comput. Syst., 3(1):63–75, Feb. 1985.

[8] B. Charron-Bost and A. Schiper. Uniform consensus is
harder than consensus. J. Algorithms, 51(1):15–37,
Apr. 2004.

[9] S. Chaudhuri, M. Erlihy, N. A. Lynch, and M. R.
Tuttle. Tight bounds for k-set agreement. J. ACM,
47(5):912–943, Sept. 2000.

[10] W. Chen, S. Toueg, and M. K. Aguilera. On the
quality of service of failure detectors. IEEE Trans.
Computers, 51(1):13–32, 2002.

[11] E. W. Dijkstra. Self-stabilizing systems in spite of
distributed control. Commun. ACM, 17(11):643–644,
Nov. 1974.

[12] A. Dimakis, A. Sarwate, and M. Wainwright.
Geographic gossip: efficient aggregation for sensor
networks. In Information Processing in Sensor
Networks, 2006. IPSN 2006. The Fifth International
Conference on, pages 69–76, 2006.

[13] D. Dolev and C. Lenzen. Early-deciding consensus is
expensive. In Proceedings of the 2013 ACM Symposium
on Principles of Distributed Computing, PODC ’13,
pages 270–279, New York, NY, USA, 2013. ACM.

[14] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B.
Johnson. A survey of rollback-recovery protocols in
message-passing systems. ACM Comput. Surv.,
34(3):375–408, Sept. 2002.

[15] K. Ferreira, J. Stearley, J. H. Laros, III, R. Oldfield,
K. Pedretti, R. Brightwell, R. Riesen, P. G. Bridges,
and D. Arnold. Evaluating the viability of process
replication reliability for exascale systems. In
Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and
Analysis, SC ’11, pages 44:1–44:12, New York, NY,
USA, 2011. ACM.

[16] M. J. Fischer, N. A. Lynch, and M. S. Paterson.
Impossibility of distributed consensus with one faulty
process. J. ACM, 32(2):374–382, Apr. 1985.

[17] M. Gamell, D. S. Katz, H. Kolla, J. Chen, S. Klasky,
and M. Parashar. Exploring Automatic, Online
Failure Recovery for Scientific Applications at
Extreme Scales. In Proceedings of the International
Conference on High Performance Computing,
Networking, Storage and Analysis, SC ’14, 2014.

[18] M. Gamell, K. Teranishi, M. A. Heroux, J. Mayo,
H. Kolla, J. Chen, and M. Parashar. Exploring Failure
Recovery for Stencil-based Applications at Extreme
Scales. In The 24th International ACM Symposium on
High-Performance Parallel and Distributed
Computing, HPDC ’15, June 2015.

[19] T. Herault, A. Bouteiller, G. Bosilca, M. Gamell,

K. Teranishi, M. Parashar, and J. J. Dongarra.
Practical scalable consensus for pseudo-synchronous
distributed systems: Formal proof. Technical Report
ICL-UT-15-01, University of Tennessee, Innovative
Computing Laboratory,
http://www.icl.utk.edu/˜herault/TR/icl-ut-15-01.pdf,
April 2015.

[20] M. A. Heroux, D. W. Doerfler, P. S. Crozier, J. M.
Willenbring, H. C. Edwards, A. Williams, M. Rajan,
E. R. Keiter, H. K. Thornquist, and R. W. Numrich.
Improving performance via mini-applications.
Technical Report SAND2009-5574, Sandia National
Laboratories, 2009.

[21] K. Huang and J. Abraham. Algorithm-based fault
tolerance for matrix operations. IEEE Transactions on
Computers, 100(6):518–528, 1984.

[22] M. Hurfin and M. Raynal. A simple and fast
asynchronous consensus protocol based on a weak
failure detector. distributed computing, pages 209–223,
1999.

[23] J. Hursey, T. Naughton, G. Vallee, and R. L. Graham.
A Log-scaling Fault Tolerant Agreement Algorithm for
a Fault Tolerant MPI. In Proceedings of the 18th
European MPI Users’ Group Conference on Recent
Advances in the Message Passing Interface,
EuroMPI’11, pages 255–263, Berlin, Heidelberg, 2011.
Springer-Verlag.

[24] L. Lamport. The part-time parliament. ACM Trans.
Comput. Syst., 16(2):133–169, May 1998.

[25] L. Lamport. PAXOS made simple. ACM SIGACT
News (Distributed Computing Column), 32(4 – Whole
Number 121):51–58, Dec. 2001.

[26] L. Lamport. Generalized Consensus and Paxos.
Technical Report MSR-TR-2005-33, Microsoft
Research, 2005.

[27] L. Lamport. Fast Paxos. Distributed Computing,
19(2):79–103, 2006.

[28] M. Larrea, A. Fernández, and S. Arévalo. Optimal
Implementation of the Weakest Failure Detector for
Solving Consensus. In Proceedings of the Nineteenth
Annual ACM Symposium on Principles of Distributed
Computing, PODC ’00, pages 334–, New York, NY,
USA, 2000. ACM.

[29] C. Mohan and B. Lindsay. Efficient commit protocols
for the tree of processes model of distributed
transactions. In SIGOPS OSR, volume 19, pages
40–52. ACM, 1985.

[30] P. Raipin Parvedy, M. Raynal, and C. Travers.
Strongly terminating early-stopping k-set agreement
in synchronous systems with general omission failures.
Theory of Computing Systems, 47(1):259–287, 2010.

[31] A. Schiper. Early consensus in an asynchronous
system with a weak failure detector. Distributed
Computing, pages 149–157, 1997.

[32] K. Teranishi and M. A. Heroux. Toward Local Failure
Local Recovery Resilience Model Using MPI-ULFM.
In Proceedings of the 21st European MPI Users’ Group
Meeting, EuroMPI/ASIA ’14, pages 51:51–51:56, New
York, NY, USA, 2014. ACM.

[33] P. Zielinski. Paxos At War. In Proceedings of the 2001
Winter Simulation Conference, 2004.

http://www.icl.utk.edu/~herault/TR/icl-ut-15-01.pdf

	Introduction
	Use case: the ULFM Agreement

	Early Returning Agreement
	Correctness

	Complexity Analysis
	ERA Optimizations
	Performance Evaluation
	Agreement Performance
	Application Usage
	S3D and FENIX
	MiniFE and LFLR Framework

	Related Work
	Conclusion
	Acknowledgments
	References

